If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=650
We move all terms to the left:
5x^2-(650)=0
a = 5; b = 0; c = -650;
Δ = b2-4ac
Δ = 02-4·5·(-650)
Δ = 13000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13000}=\sqrt{100*130}=\sqrt{100}*\sqrt{130}=10\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{130}}{2*5}=\frac{0-10\sqrt{130}}{10} =-\frac{10\sqrt{130}}{10} =-\sqrt{130} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{130}}{2*5}=\frac{0+10\sqrt{130}}{10} =\frac{10\sqrt{130}}{10} =\sqrt{130} $
| -7/9(x+7)=14 | | 3(z+3)=45 | | (8^x+1)/(16^x)=32768 | | 2(4n–3)–8=4+2n | | -2m-6=-3(-2m-8) | | 10^-0.204=5/y-2 | | 3(4g-2)=-30 | | 4(2x+1)=5x+5x+8* | | 3x+5x=6+10x | | 8(y+5)=4y+20 | | 4xx3=23 | | 5w+8=5w=w= | | 8(y+5)=4y+2- | | 4w-3.5=4.5 | | 5/2+8v=54 | | −7(n+2)=−14−7n | | 2^(3x)+9=25 | | 18-6q=-13q-15+4q | | X=22.5+2.5y | | 7y/7=70 | | 25+y=35 | | F(5)=3(x-1)+2 | | 13+8s-2s=s-28 | | 4=-(t-20) | | 2x^2=7000 | | 5j-11=8-3+j | | (x+4x)/2=40 | | -5(x+1)=5 | | 20000=10000*1,1^t | | 6x–20=100 | | 19.63-200.8=a | | 20000=10000.1,1^t |